Full-text indexing :
The Suffix Array

Slides marked with */+ adopted from Ben Langmead/Carl Kingsford, respectively

Suffix array

TS = abaaba$ Maintain T as part of
the index

SA(T) =
(SA ="Suffix Array”)

$
a’$

aabat m+ 1
abas integers

abaabas$
bas}

baaba}$

| O WIN] UV O

Suffix array of T is an array of integers in [0, m] specifying the
lexicographic order of TS's suffixes

Another Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

S = Cattcat$ * Store the starting indices of
the suffixes in an array.
O|cattcat$ 7|$
| attcat$ 5[at$
2 tecat$ hbeicaty || [attcat$
3|tcat$ > 4|cat$
4/cat$ the indices just O|cattcat$
5 at$ the r'ide§ 6 t$
6/t$ 3|tcat$
AN 2|ttcat$

index of suffix

suffix of s

Suffix array

O(m) space, like suffix tree Is “constant factor” worse, better, same?

/ .

.& e 4 $

—] \ /’ R
< P BanANAS
Q2 :

S
3
g 3 _
g 3 6l
g g & 0 5] As
> / S 4 3| ANAS
‘i S - § $ NA/,/' $ NA$ | 1] ANANAS
2 : K a1 [2] [o] BANANAS
() o %
£ 10 7 41 NAS
< > $ / \ NA$ =
& g / 2

NANA$
N '/ 3 1

! | | | |
0.2 0.4 0.6 0.8 1.0

500
I
AN

Fraction of human chromosome 1 indexed

Suffix array

Peak memory usage (megabytes)

32-bit integers sufficient for human genome, so fits in
~4 bytes/base x 3 billion bases = 12 GB. Suffix tree is >45 GB.

1000 1500 2000 2500 3000 3500

500

&
&
%\\

v $
A NA LB
" " /BANANA
o| .-
v“. —. .
$ NA .-" " % NA$

I I I
0.2 0.4 0.6

Fraction of human chromosome 1 indexed

I
0.8

I
1.0

5 4 2
$ NAS$

3 1

vlsfof-Jolofo]

$

AS

ANAS$
ANANAS$
BANANAS
NAS
NANAS$

Table I. Performance Summary of the Construction Algorithms

Algorithm Worst Case = Time Memory
Prefix-Doubling
MM [Manber and Myers 1993] O(nlogn) 30 8n
LS [Larsson and Sadakane 1999] O(nlogn) 3 8n
Recursive
KA [Ko and Aluru 2003] O(n) 2.5 7-10n
KS [Kérkkédinen and Sanders 2003] On) 4.7 10-13n
KSPP [Kim et al. 2003] On) — —
HSS [Hon et al. 2003] O(n) — —
KJP [Kim et al. 2004] O(nloglogn) 3.5 13-16n
N [Na 2005] O(n) — —
Induced Copying
IT [Itoh and Tanaka 1999] O(n?logn) 6.5 5n
S [Seward 2000] O(n?logn) 3.5 5n
BK [Burkhardt and Kirkkédinen 2003] O(nlogn) 3.5 5—6n
MF [Manzini and Ferragina 2004] O(n?logn) 1.7 5n
SS [Schiirmann and Stoye 2005] O(n?) 1.8 9-10n
BB [Baron and Bresler 2005] O(n+/logn) 2.1 18n
M [Maniscalco and Puglisi 2007] O(n“logn) 1.3 5—6n
MP [Maniscalco and Puglisi 2006] O(n?logn) 1 5—-6n
Hybrid
IT+KA O(n?logn) 4.8 5n
BK+IT+KA O(nlogn) 2.3 5—-6n
BK+S O(nlogn) 2.8 5—6n
Suffix Tree
K [Kurtz 1999] O(nlogo) 6.3 13-15n

Time is relative to MP, the fastest in our experiments. Memory is given in bytes
including space required for the suffix array and input string and is the aver-
age space required in our experiments. Algorithms HSS and N are included,
even though to our knowledge they have not been implemented. The time for
algorithm MM is estimated from experiments in Larsson and Sadakane [1999].

Puglisi, Smyth, Turpin. A Taxonomy of Suffix Array Construction Algorithms. ACM Computing Surveys, 39(2):4,2007.

Suffix array: querying

Is P a substring of T?

1. For Pto be a substring, it must
be a prefix of =1 of T's suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

— [] Ol W[N] U] O

$

a$
aabatl
abas$
abaaba}$
ba}$
baaba}

Suffix array: querying

Is P a substring of T?

1. For Pto be a substring, it must
be a prefix of =1 of T's suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

Use binary search

— [] Ol W[N] U] O

$

a$
aabatl
abas$
abaaba}$
ba}$
baaba}

Suffix array: querying

Is P a substring of T?

1. For P to be a substring, it must 6 | ¢
be a prefix of =1 of T's suffixes

Pay attention to this observation!

Almost all full-text indices (definitely the ones we will learn
about), work based on the observation that every
substring of T is a prefix of some suffix of T. These
indices then focus on how to organize suffixes of T in a
manner amenable to efficient search.

Suffix array: querying

Is P a substring of T?
Do binary search, check whether Pis a

prefix of the suffix there

How many times does P occur in T?

Two binary searches yield the range of
suffixes with P as prefix; size of range
equals # times Poccursin T

Worst-case time bound?

O(loga m) bisections, O(n) comparisons
per bisection, so O(n log m)

— [] Ol W[N] UL O

$

a$
aaba}l
aba}$
abaaba}
ba}$
baaba}

Suffix array: querying

Consider further: binary search for suffixes with P as a prefix
Assume there's no $ in P. So P can’t be equal to a suffix.

Initialize [= 0, ¢ = floor(m/2) and r = m (just past last elt of SA)

(I

“left” “center”

Notation: We'll use use SA[I] to refer to the suffix corresponding to
suffix-array element [. We could write T[SA[/]:], but that’s too verbose.

Throughout the search, invariant is maintained:

SA[l] < P<

Suffix array: querying

Throughout search, invariant is maintained:

SA[l] < P<

What do we do at each iteration?

letc="floor((r+1)/2)
f P <SAJc], either stop or let » = ¢ and iterate
f P> SA|c], either stop or let [= ¢ and iterate

When to stop?

P<SAlclandc=Il+1 - answerisc

P>SA[c]andc=7r-1 - answeris

| ongest Common Prefix

The longest common prefix of two strings s,t is simply the length
of the prefix they share prior to the first difference (or the termination
of either string).

S ACTTACAGACGACCCGAGAC
T ACTTACAGACGACGGAGCTAGC

A

LCP(S,T) = ACTTACAGACGAC

ILCP(S,T)| = 13

Below, to avoid extra notation, we will use LCP(S,T)
as shorthand for |[LCP(S,T)|

Suffix array: querying

Say we're comparing P to SA[c] and we've already compared P to
SA|[l] and in previous iterations.

[| LCP(P,SA[l])=3
T— “Length of the LCP”

More generally:

LCP(P, SA|c]) =
SA(T) | ¢ | LCP(P,SA[c]) =3 min(LCP(P, SA[I]), LCP(P,)

We can skip character comparisons

|l
Ul

LCP(P,)

Suffix array: querying

Say we're comparing P to SA[c] and we've already compared P to
SA|[l] and in previous iterations.

[| LCP(P,SA[l])=3
T— “Length of the LCP”

More generally:

LCP(P, SA|c]) =
SA(T) | ¢ | LCP(P,SA[c]) =3 min(LCP(P, SA[I]), LCP(P,)

We can skip character comparisons

worst case still O(n log m), worst case example
but we're closer. S=acwm-2b, P=c

Imagine we had pre-computed LCP(i,j) for all
suffixes | and | in the original text T.

Suffix dalrray. querying Assume, wlog, that
D = LCP(SA[l], SA[c]) = D’ = LCP(SA[c], SA[r])

: : : otherwise there are symmetric cases.
Take an iteration of binary search: Y

length is u

LCP(P, SA[I]), and

LCP(SA[c], SA[])

SA(T) | ¢

key: u has already been
computed by previous iterations,
and D can be looked-up in constant
time

Suffix array: querying

Three cases: or, it D' = LCP(P,) is larger, 3 symmetric cases.

LCP(SA[c], SA[I]) > LCP(SA[c], SA[I]) < LCP(SA[c], SA[l]) =
LCP(P, SA[!]) LCP(P, SA[I]) LCP(P, SA[I])

Suffix array: querying

LCP(SA[c], SA[I]) >

Case 1: LCP(P, SA[]])

SA[/] fuml Next char of P after the LCP(P, SA[I]) must

be greater than corresponding char of SA[c]

P> SA]c]

SA[c]

In this case, we compute
rookherenext LCP(P[u:], SA[c][u:]).
C becomes our new |,

and now we know the new

LCP(SA[c], SA[T]) > LCP(P, SA[l]), b/c we just

LCP(P, SA[I]) computed it!

Suffix array: querying

LCP(SA[c], SA[I]) <
Case 2: LCP(P, SA[]])

SA[/] Next char of SA[c] after LCP(SA[c], SA[])

must be greater than corresponding char of P

Look here next

P < SA]c]

In this case, we compute
LCP(Plu:], SA[c][u:]).
C becomes our new r,
and now we know the new

LCP(SA[c], SA[I]) < LCP(P,), b/Q we just
LCP(P, SA[I]) computed it!

Suffix array: querying

LCP(SA[c], SA[l]) =

Case 3: LCP(P, SA[T])

Must do further character comparisons

A
SA[l] between P and SA|[c]

Each such comparison either:

(a) mismatches, leading to a bisection

SA[c] (b) matches, in which case LCP(P, SA[c]) grows

LCP(SA[c], SA[l]) =
LCP(P, SA[I])

Suffix array: querying

We improved binary search on suffix array from O(n log m) to O(n + log m)
using information about Longest Common Prefixes (LCPs).

LCPs between P and suffixes of T computed during search, LCPs among
suffixes of T computed offline

LCP(SA[c], SA[I]) > LCP(SA[c], SA[]]) < LCP(SA[c], SA[I]) =
LCP(P, SA[!]) LCP(P, SA[I]) LCP(P, SA[!])

Compare some

Bisect right! Bisect left! .
J characters, then bisect!

Sketch of Running Time

s

Thm. Given the LCP(X,Y) values, searching for a string P in a suffix
array of length m now takes O(IP| + log m) time.

In case 1 & 2, we make O(1) comparisons and bisect left or right — there
are at most O(log m) bisections.

In case 3 we try to match characters starting at some offset between SA|c]
and P. If they match, those characters will never be compared again, so
there are at most O(IPl) such comparisons.

Mismatching characters may be compared more than once.

But there can be only 1 mismatch / bisection. There are O(log m)
bisections, so there are at most O(log m) mismatches.

~.Total # of comparisons = O(IP| + log m).

How to pre-compute LCP

* Jo perform this “efficient” search, we must be able to
look up LCP(SA[c], SA[l]) and LCP(SA[c], SA[r]).

* How can we pre-compute this information efficiently?
 Which LCP values do we need (hint: not all of them)?

* Given LCP for left and right sub-interval of a search,
how can we compute LCP for the containing interval?

Suffix array: LCPs

How to pre-calculate LCPs for every (I, ¢) and (c, r) pair in the search tree?

Triples are ([, c, r) triples
(0, 8, 16)

O
(0, 4, 8) g (8,12, 16)

(0,2, 4,68 (810,12 (12,14, 16)

0,1, 2) (2,3,4): 4,5,6) 4 (6, 7,8)§ (8,9,10 s 10,11,12)3(12,13,14 (14,15, 16)

SA(T):

0 5 10 | 15

Example where m =16 (incl.) # search tree nodes =m -1

Suffix array: LCPs

Suffix Array (SA) has m elements

Define LCP1 array with m - 1 elements such that LCP[i] = LCP(SA[il, SA[i+1])

SA(T): LCP1(T)
O § e s T LCP(SAIO], SA[T])
5 a $ oo > 1
2 aaba}$:::::::: 1
3|abas il 3
0 abaaba$2:::O
41 bas :::::Iiff::::
¥ | 2
1{baaba$-—

Suffix array: LCPs

LCP2[i] = LCP(SA[i], SALi+1], SA[i+2])

SA(T): LCP1(T): LCP2(T):

6§ -cmee . .
oot [T REE—

Sl B R ; 1 | g

2| aaba$=lll) o I > 1

3] abat :::ZZZ'.::: 3 -_-_-_-_-_-_-_'.'.'.'_'_'.'.'.; 1

O] abaabas$:i, 5 o

4| basil xS > 0
Pt <

1| baaba$-

min(LCP1[i], LCP1[i+1])

In fact, LCP of a range of consecutive suffixes in SA equals the
minimum LCP1 among adjacent pairs in the range

LCP1 is a building block for other useful LCPs

Suffix array: LCPs

Good time to calculate LCP1 it is at the same time as we build the
suffix array, since putting the suffixes in order involves breaking
ties after common prefixes

SA(T): LCPILT):
) [IR
3o
5 a $ Il > 'I
p) aaba $:::::::: 1
3abag il 3
0 abaaba$::::O
4| bas
7| 2
Tl baaba$-—

Suffix array: LCPs

T = abracadabracada

(0, 8, 16)

@
(0,4, 8) g (8,12, 16)

(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2,3,4): (4,5, 6) ® (6, 7,8)§ (8,9,10 10,11,12)3(12,13,14 (14, 15, 16)

saT): (15114710103 112151811 1114113692
iceim:folils8l1151113]l0l7]l0l4]l0l2]0]6

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
o
(0,4, 8) g (8,12, 16)
(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2,3,4): (4,5, 6) ® (6, 7,8)§ (8,9,10 10,11,12)3(12,13,14 (14, 15, 16)

LCP1(T) 1{8{1|5(1(3]0]7[0]4]10|12(0]6
0 5 10 15

SA(T):‘LTSIM 710110[3[12[518 1111114 [13[6]9]2

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
(O
(0,4, 8) g (8,12, 16)
(0,2,4) 4,6,8) : (810,12 (12,14, 16)
0,1,2) /= 234) (456) ‘ (6,7,8): (8,9, 10)A(0,11,12512,13, 19)>A (14, 15, 16)
[1] © § § §
SA(T):151 (')1'03{2581'1'14136'9'2
LCP1(T): | O 1({511T13[0]7([014[012]0]6

0 5 10 15

Suffix array: LCPs

T = abracadabracada$

(0, 8, 16)

@
(0,4, 8) (8,12,16)

(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2, 34 (4,5, 6) ‘ (6 7, 8) (8,9,10 10,11,12)3(12,13,14 (14,15,16)

SA(T): [15]14 1031°25 g1 114 13[6[9]2
LCP1(T): | O E. 1[3[0|7]|0|4]0]2]|0]|6

Suffix array: LCPs

T = abracadabracada$

(0, 8, 16)
o
0, 4, 8) (8,12, 16)
0,2.4) 4,68 | (810,12) (12,14, 16)
min(0, 1) n : : : -
0,1,2) Jr= (2, 3, 4 (4,5, 6) (6,7,8): (8,9,10 10,11,12)(12, 13,14 (14,15, 16)
oiE[] v 9 o IiT
sA(T): [15[14 10[3 [12 1] 4 [13 2
LCP1(T): [O | 1 5 3 4 2
0 10 15

Suffix array: LCPs

T = abracadabracada$

| (0 8 16)
%, O
(0, 2, 47X 4,6,8) (810,12) (12,14, 16)

. 4): (4,5, 6) (6,7,8): (8,9,10 10,11, 12)(12,13, 14 (14,15, 16)

e[¢ 0 Tiv: o X

SA(T): / .
CPI(T):{O 18T |511T[3]1]0]7(0{4|10[2]0]6
LCP_LC(T):| 0| 0| 8
LCP_CR(T):{ T | T] 1
0 5 10 15

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
C
: (8,12,16)

4,6,8) : (810,12 (12,14, 16)

(2, 3,4)§ (4,5, 6) @ (6, 7,8)§ (8,9,10 10,11,12x:(12,13.,14 (14, 15, 16)

(0, 4, 8)
(0,2, 4) ®

(0, 1,2)

saT):[15[14] 7o [10[3[12[5[8 1 [11[4[13]6]9
cPim:[ol1|8[1|5[1(3[o[7|0(4]0]2]0]6
e em:lololslols|1]3]ol7[ol4al0]2]0]6
lcP cr:| 11 [1]lof1]o]lo]lolololololo]o0]o0

0 5 10 15

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0O, 1, 2) is at

14

12

11

2

LCP_LC[0], not LCP_LCJ[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LCJ[c-1]

Suffix array: LCPs

Can be done in:

T = abracadabracada$ O(m) time and space

(0,8, 16)
C
: (8,12,16)

4,6,8) : (810,12 (12,14, 16)

(2, 3,4)§ (4,5, 6) @ (6, 7,8)§ (8,9,10 10,11,12x:(12,13.,14 (14, 15, 16)

(0, 4, 8)
(0,2, 4) ®

(0, 1,2)

saT):[15[14] 7o [10[3[12[5[8 1 [11[4[13]6]9
cPim:[ol1|8[1|5[1(3[o[7|0(4]0]2]0]6
e em:lololslols|1]3]ol7[ol4al0]2]0]6
lcP cr:| 11 [1]lof1]o]lo]lolololololo]o0]o0

0 5 10 15

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0O, 1, 2) is at

14

12

11

2

LCP_LC[0], not LCP_LCJ[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LCJ[c-1]

Suffix array: querying review

We saw 3 ways to query (binary search) the suffix array:

1. Typical binary search. Ignores LCPs. O(n log m).

2. Binary search with some skipping using LCPs
between P and T’s suffixes. Still O(n log m), but it
can be argued it’'s near O(n + log m) in practice.

Gusfield:
“Simple Accelerant”

3. Binary search with skipping using all LCPs, Gusfield:
including LCPs among T's suffixes. O(n +logm). “Syper Accelerant”

How much space do they require?

1. ~mintegers (SA)
2. ~m integers (SA)
3. ~3mintegers (SA, LCP_LC, LCP_CR)

Suffix array: performance comparison

>uper simple No accelerant
accelerant accelerant
python -O 68.78 s 69.80 s 102.71 s
pypy -O 537s 5.21s 8.74 s
character 99.5 M 117 M 235 M
comparisons

Matching 500K 100-nt substrings to the ~ 5 million nt-long E. coli
genome. Substrings drawn randomly from the genome.

Index building time not included

Another “practical” speedup

e|magine you will never search for patterns of length
< Kk (e.g. 4-mers are non-informative in any
moderately-sized genome)

eConsider the following “enhanced” suffix array:
¢ Build a hash-table from k-mers to suffix array intervals. Now, any pattern of
length k’ > k must start with some hashed prefix of length k. Generally, the
Interval that needs to be searched is much smaller

AAC | [1)
AAGCCATG

AAG | [i)

AAT | [77)

Now, you only need to search the interval [i,j) — O(n * log(j-i)) time

Can provide considerable speedup

dna english proteins sources xml
m = 16
SA 1.00 1.00 1.00 1.00 1.00
k=12 SA-LUT?2 1.13 1.34 1.36 1.43 1.35
Linear SA-LUTS3 1.17 1.49 1.61 1.65 1.47
probing SA-hash 3.75 2.88 2.70 2.90 2.03
m = 64
Hash at SA 1.00 1.00 1.00 1.00 1.00
a=0.5 SA-LUT2 1.12 1.33 1.34 1.42 1.34
SA-LUTS3 1.17 1.49 1.58 1.64 1.44
SA-hash 3.81 2.87 2.62 2.75 1.79

Table 1. Speedups with regard to the search speed of the plain suffix array, for the five datasets
and pattern lengths m = 16 and m = 64

Some other clever ideast:

- Use a k-ary (B-tree) layout
- Use a lookup table where keys are concatenated Huffman codes of fixed

bit length
- Use alternative strategy (doubling/galloping) to find the right SA boundary

“Two Simple Full-Text Indexes Based on the Suffix Array”, Szymon Grabowski and Marcin Raniszewski

Kowalski, Tomasz, et al. "Suffix arrays with a twist." arXiv preprint arXiv:1607.08176 (2016).

Suffix array: sorting suffixes

One idea: Use your favorite sort, e.g., quicksort

O| abaaba$ def quicksort(q):
'] 1t) gt = []) []

baabas if len(q) <= 1:
2| aabat$ return g
3 for x in q[1:]:

abat if x < q[0]: «---"77T T T .-
4 ba$ 1t.append(x) el
5| 5 else:

$ gt.append(x)

6| $ return quicksort(1lt) + g[9:1] + quicksort(gt)

Expected time: O(m2log m)

Not O(m log m) because a suffix comparison is O(m) time

Suffix array: sorting suffixes

One idea: Use a sort algorithm that’s aware that the items
being sorted are strings, e.g. “multikey quicksort”

Ol abaabat

1| baaba$

2] aaba$

3] abat Essentially O(m?) time
41 ba$

5] a$

6| $

Bentley, Jon L., and Robert Sedgewick. "Fast algorithms for sorting and searching strings."
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 1997

Suffix array: sorting suffixes

Another idea: Use a sort algorithm that’s aware that the
items being sorted are all suffixes of the same string
Original suffix array paper suggested an O(m log m)

algorithm
Manber U, Myers G. "Suffix arrays: a new method for on-line string

searches." SIAM Journal on Computing 22.5 (1993): 935-948.

Other popular O(m log m) algorithms have been suggested

Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-
CS-TR:99-214, LUNDFD6/(NFCS-3140)/1-43/(1999), Department of
Computer Science, Lund University, Sweden, 1999.

More recently O(m) algorithms have been demonstrated!

Karkkainen J, Sanders P. "Simple linear work suffix array construction."
Automata, Languages and Programming (2003): 187-187.

Ko P, Aluru S. "Space efficient linear time construction of suffix arrays."
Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2003.

The Skew Algorithm (aka DC3)

Karkkainen & Sanders, 2003
¢ Main idea: Divide suffixes into 3 groups:

* Those starting at positions i=0,3,6,9,.... (i mod 3 = 0)
* Those starting at positions [,4,7,10,... (imod 3 = 1[)
* Those starting at positions 2,5,8,| |,... (i mod 3 = 2)

* For simplicity, assume text length is a multiple of 3 after padding
with a special character.

0 1 2 3 45 6 7 8 9 10 11 12
TlOon)=yabbadabbadoo

SA=(12,1,6,4,9,3,8,2,7,5,10,11,0)

Basic Outline:

e Recursively handle suffixes from the i mod 3 = | and i mod 3 =2
groups.

e Merge the i mod 3 = 0 group at the end.

Step 0 — Constructing a sample
These are called the “sample suffixes”

Step 0: Construct a sample. For £ = 0,1, 2, define
B, ={i€|0,n| |imod 3 =k}.
Let C' = By U By be the set of sample positions and S the set of sample suffizes.

Example. By = {1,4,7,10}, By = {2,5,8,11}, i.e., C = {1,4,7,10,2,5,8,11}.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step | — Sorting the sample

Step 1: Sort sample suffixes. For k= 1,2, construct the strings

Ry = [titps1tesa][tessteratiss] - - - [tmax B, tmax B, +1tmax B, +2]

whose characters are triples |t;t;11t;12]. Note that the last character of Ry is always
unique because tpaxp,+2 = 0. Let R = Ry ® Ry be the concatenation of R; and
Rs. Then the (nonempty) suffixes of R correspond to the set S¢ of sample suffixes:
titic1tivolltisatizatiss] . .. corresponds to S;. The correspondence is order preserving,
i.e., by sorting the suffixes of R we get the order of the sample suffixes S¢.

Example. R = |abbl|ada||bbal[do0||bbal|dabl||bad|[000].

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step | — Sorting the sample

To sort the suffixes of R, first radix sort the characters of R and rename them
with their ranks to obtain the string R’. If all characters are different, the order

of characters gives directly the order of suffixes. Otherwise, sort the suffixes of R’
using Algorithm DC3.

Example. R' = (1,2,4,6,4,5,3,7) and SAr = (8,0,1,6,4,2,5,3,7).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

Example. R = |abb||ada||bbal|do0||bba||dab]||bad|[o00].

Once the sample suffixes are sorted, assign a rank to each suffix. For : € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,+1) = rank(S,;12) = 0. For i € By, rank(S;) is undefined.

7] 01 2 3 45 6 7 8 9
Example. rank(S;) L1 4126 _L53L781L00

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

Once the sample suflixes are sorted, assign a rank to each suffix. For : € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,+1) = rank(S,+2) = 0. For i € By, rank(S;) is undefined.

7] 01 2 3 45 6 7 8 9
Example. rank(S;) L 14126 L53L781L00

01 2 3% 5 7 89
Example. rank(S;) 1L 1 4126 L 53 L78L00

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

Once the sample suflixes are sorted, assign a rank to each suffix. For : € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,+1) = rank(S,2) = 0. For i € By, rank(.S;) is undefined.

7] 0 1 2 3 45 6 7 8 9
Example. rank(S;) L 14126 L53L781L00
Note: After only 1 level of recursion, these suffixes would be
Iﬂtied!!

Example. R = |abbl|adal|bba||do0|[bba||dab|/lbad|[000].

The resolved ranks here represent what we'd get after
a second level of recursion.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

0 1 23 45 6 7 8 9 1011
T0on)=yabbadabbado

1 2 4 / 4 0 3 3
Example. R = |abb||ada||bbal|do0||bba||dab]||bad|[o00].

Re = [24?][46/][47ft][63‘8]/

A

These suffixes were tied at the previous level, but here, we
can resolve them. The lexical renaming allows us to
compare longer and longer suffixes of the text.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 2 — Sorting the non-sample suffixes

Step 2: Sort nonsample suffixes. Represent each nonsample suffix S; € Sp,
with the pair (¢;, rank(S;y1)). Note that rank(S;;,) is always defined for i € B,.
Clearly we have, for all 7,y € By,

Si <8 = (ti,rank(S;y1)) < (tj,rank(S;+1)).
The pairs (t;, rank(S;;11)) are then radix sorted.

Example. Sis < Sg < S9 < S3 < Sy because (0,0) < (a,5) < (a,7) < (b,2) < (y,1).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 2 — Sorting the non-sample suffixes

Step 3: Merge. The two sorted sets of suffixes are merged using a standard
comparison-based merging. To compare suflix S; € S¢ with S; € Sp,, we distinguish

two cases:
Se Se2 Seo Se1

i€ B S <8 = (t rank(Sin1)) < (&5, ranklS; 1))

1 E B2 : Sz S Sj < (tz,t 1,7°ank SH—Q)) (ti tj+1,7°ank(5j+2)>

SL2 Sho SL 0 SL Sho
Note that the ranks are defined in all cases.

Example. S; < Sg because (a,4) < (a,b) and S3 < Sg because (b,a,6) < (b,a,7).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Running Time

T(n) = O(n) +T(2n/3)

time to sort and array in recursive calls
merge is 2/3rds the size of

starting array

Solves to T(n) = O(n):

Expand big-O notation: T(n) < cn +T(2n/3) for some c.
Guess: T(n) < 3cn
Induction step: assume that is true for all i < n.

T(n) < cn+ 3c(2n/3) =cn + 2cn = 3cn O

Using the suffix array for read
alignment: STAR

Vol. . , -
ORIGINAL PAPER doi 10,1093 ioiformatiea/ 5635

Sequence analysis Advance Access publication October 25, 2012

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin'*, Carrie A. Davis', Felix Schlesinger’, Jorg Drenkow', Chris Zaleski',
Sonali Jha', Philippe Batut', Mark Chaisson® and Thomas R. Gingeras'
'Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ?Pacific Biosciences, Menlo Park, CA, USA

Associate Editor: Inanc Birol

Seeding through SA search for MMPs

(a) Map Map again
MMP1 } MMP2

RNA-seq read

- e e - JL--

exons in the genome

(b) (c)

Map Map
MMP1 Extend MMP1 Trim
mismatches A-tail, or adapter,

or poor quality tail

Fig. 1. Schematic representation of the Maximum Mappable Prefix
search in the STAR algorithm for detecting (a) splice junctions, (b) mis-
matches and (¢) tails

With read sequence R, read location i, and reference sequence G, the
MMP(R,i,G) is defined as the longest substring (Ri, Ri+1, ..., RizmmL-1)
where MML is the maximum mappable length.

MMPs are computed starting at 5’ end, but also at regular intervals in the
read. The read is also searched in the 3’->5’ direction.

Question: How do you search for an MMP in the suffix array?

Seeding through SA search for MMPs

To speed up suffix array search even further, STAR takes
advantage of the heuristic we discussed above:

1.2. Pre-indexing of suffix arrays
While suffix array search is theoretically fast owing to its binary nature, in practice it may suffer

from non-locality resulting in persistent cache misses which deteriorate the performance. To alleviate
this problem we developed a pre-indexing strategy. After the SA is generated, we find the locations of
all possible L-mers in the SA, L<=Lax, Where L.y is user defined and is typically 12-15. Since the
nucleotide alphabet contains only four letters, there are N =2°" different L-mers for which the SA
locations have to be stored. For example, if L=L,,x=14, N\~268M and for 33-bit SA indices it will require
1GB of storage. All L-mers with L<Lax Will require 1/3 more of storage space. Using the L-mer indices
we can immediately bound each search in the SA for all strings longer than Liax , and obtain the

complete answer for all strings shorter than L,,ax. This procedure makes the SA search more local and
speeds it up by a factor of 2-4.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Seeds are clustered into windows and “stitched”

Seeds are filtered by frequency of occurrence to select
“anchors” (essentially, infrequently occurring seeds)

Alignment windows (genomic regions) are selected around
anchors

All co-linear matches within an alignment window (anchor
and non-anchor) are stitched together to form a linear

alignment for the whole fragment (ends of a paired-end
read are treated as a single fragment)

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Stitching and Extension

Iy

Read sequence

Piece 1

Piece 2

Genome

oF

max
™ <T}' <T2

0

92

N1 if Ry +1)=G(g 1) &R(r + 1) # G(gy + 7+ D)
z [_1 if R(p +71) # G(g, +71) &R(ry +7) = G(g1 + 7+ 4)

otherwise

— Pgap(rj')}

Note: this is a modified recurrence that allows only 1 gap
between the two “pieces” being stitched together. This
leads to a runtime that is proportional to r2 - r1, but this
places structural constraints on the types of alignments that

can be found.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Scoring alignments

S =+ Z P — ZP,”,,, - P - Zpdel - ZPga/) ’

match mismatch inserion deletion gap

The alignment is scored in a straightforward way. Here, ins /
del are indels in the stitching, while “gap” is taken to be an
intronic gap between parts of a read or read ends. Gaps are
scored differently, with a logarithmic penalty in their length.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Collecting Alignment Results

Finally, alignments from all alignment windows are collected
and sorted by score and alignments within a user-specified
distance from the best-scoring alignment are reported.

STAR has other abilities we won’t discuss in detail (e.g. finding
chimeric alignments by letting reads span multiple alignment
windows), and has been heavily updated since publication (still
in active development). It’s now also commonly used for e.g.
fusion detection and can even align circular transcripts or
allow back-splicing in alignments.

We will explore the results from the STAR paper in a later
lecture along with results from other “full text” aligners.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

