
Full-text indexing :
The Suffix Array

Slides marked with */+ adopted from Ben Langmead/Carl Kingsford, respectively

Suffix array

T$ = abaaba$

SA(T) =

m + 1
integers

As with suffix tree,
T is part of index

(SA = “Suffix Array”)
$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

6
5
2
3
0
4
1

Suffix array of T is an array of integers in [0, m] specifying the
lexicographic order of T$’s suffixes

Maintain T as part of
the index

*

Another Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = cattcat$

cattcat$
attcat$
ttcat$
tcat$
cat$
at$
t$
$

0
1
2
3
4
5
6
7

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

7
5
1
4
0
6
3
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

+

Suffix array

O(m) space, like suffix tree

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fraction of human chromosome 1 indexed

Pe
ak

 m
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

●

●

●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

14
0

Fraction of human chromosome 1 indexed

Ti
m

e
(s

ec
on

ds
)

Is “constant factor” worse, better, same?

Suffi
x t

ree 6
5
3
1
0
4
2

$
A$
ANA$
ANANA$
BANANA$
NA$
NANA$

6
$

*

Suffix array

32-bit integers sufficient for human genome, so fits in
~4 bytes/base ⨉ 3 billion bases ≈ 12 GB. Suffix tree is >45 GB.

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fraction of human chromosome 1 indexed

Pe
ak

 m
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

●

●

●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

14
0

Fraction of human chromosome 1 indexed

Ti
m

e
(s

ec
on

ds
)

Suffi
x t

ree

Suffix array

6
5
3
1
0
4
2

$
A$
ANA$
ANANA$
BANANA$
NA$
NANA$

6
$

*

Puglisi, Smyth, Turpin. A Taxonomy of Suffix Array Construction Algorithms. ACM Computing Surveys, 39(2):4, 2007.
+

Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

1. For P to be a substring, it must
be a prefix of ≥1 of T’s suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

Use binary search

*

Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

1. For P to be a substring, it must
be a prefix of ≥1 of T’s suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

Use binary search

*

Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

1. For P to be a substring, it must
be a prefix of ≥1 of T’s suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

Use binary search

Pay attention to this observation!

Almost all full-text indices (definitely the ones we will learn 
about), work based on the observation that every
substring of T is a prefix of some suffix of T. These
indices then focus on how to organize suffixes of T in a
manner amenable to efficient search.

*

Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

Do binary search, check whether P is a
prefix of the suffix there

How many times does P occur in T?

Worst-case time bound?

O(log2 m) bisections, O(n) comparisons
per bisection, so O(n log m)

Two binary searches yield the range of
suffixes with P as prefix; size of range
equals # times P occurs in T

*

Suffix array: querying

Consider further: binary search for suffixes with P as a prefix

Throughout the search, invariant is maintained:

Initialize l = 0, c = floor(m/2) and r = m (just past last elt of SA)

“left” “center” “right”

SA[l] < P < SA[r]

Notation: We’ll use use SA[l] to refer to the suffix corresponding to
suffix-array element l. We could write T[SA[l]:], but that’s too verbose.

Assume there’s no $ in P. So P can’t be equal to a suffix.

*

Suffix array: querying

Throughout search, invariant is maintained:

When to stop?

P < SA[c] and c = l + 1 - answer is c
P > SA[c] and c = r - 1 - answer is r

SA[l] < P < SA[r]

What do we do at each iteration?

Let c = floor((r + l) / 2)
If P < SA[c], either stop or let r = c and iterate
If P > SA[c], either stop or let l = c and iterate

*

Longest Common Prefix
The longest common prefix of two strings s,t is simply the length 
of the prefix they share prior to the first difference (or the termination
of either string).

ACTTACAGACGACCCGAGAC
ACTTACAGACGACGGAGCTAGC

S
T

LCP(S,T) = ACTTACAGACGAC

|LCP(S,T)| = 13 
 
Below, to avoid extra notation, we will use LCP(S,T) 
as shorthand for |LCP(S,T)|

Suffix array: querying

Say we’re comparing P to SA[c] and we’ve already compared P to
SA[l] and SA[r] in previous iterations.

SA(T)

...
...

r

c

l LCP(P, SA[l]) = 3

“Length of the LCP”

LCP(P, SA[r]) = 5

LCP(P, SA[c]) ≥ 3

More generally:

LCP(P, SA[c]) ≥
 min(LCP(P, SA[l]), LCP(P, SA[r]))

We can skip character comparisons

*

Suffix array: querying

Say we’re comparing P to SA[c] and we’ve already compared P to
SA[l] and SA[r] in previous iterations.

SA(T)

...
...

r

c

l LCP(P, SA[l]) = 3

“Length of the LCP”

LCP(P, SA[r]) = 5

LCP(P, SA[c]) ≥ 3

More generally:

LCP(P, SA[c]) ≥
 min(LCP(P, SA[l]), LCP(P, SA[r]))

We can skip character comparisons

worst case still O(n log m),
but we’re closer.

worst case example
S=acM-2b, P=c

*

Suffix array: querying

Say we’re comparing P to SA[c] and we’ve already compared P to
SA[l] and SA[r] in previous iterations.

SA(T)

...
...

r

c

l LCP(P, SA[l]) = 3

“Length of the LCP”

LCP(P, SA[r]) = 5

LCP(P, SA[c]) ≥ 3

More generally:

LCP(P, SA[c]) ≥
 min(LCP(P, SA[l]), LCP(P, SA[r]))

We can skip character comparisons

worst case still O(n log m),
but we’re closer.

Imagine we had pre-computed LCP(i,j) for all
suffixes i and j in the original text T.

Suffix array: querying

SA(T)

...
...

P

Take an iteration of binary search:

l

c

r

Say we know
LCP(P, SA[l]), and
LCP(SA[c], SA[l])

Assume, wlog, that
D = LCP(SA[l], SA[c]) ≥ D’ = LCP(SA[c], SA[r])
otherwise there are symmetric cases.

length is u
length is D

key: u has already been
computed by previous iterations,

and D can be looked-up in constant
time

*

Suffix array: querying

Three cases:

P SA[c]

SA[l]

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

or, if D’ = LCP(P, SA[r]) is larger, 3 symmetric cases.

*

Suffix array: querying

Case 1:

P
SA[c]

SA[l] Next char of P after the LCP(P, SA[l]) must
be greater than corresponding char of SA[c]

xx

SA[r]

Look here next

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

P > SA[c]

In this case, we compute
LCP(P[u:], SA[c][u:]).
c becomes our new l,

and now we know the new
LCP(P, SA[l]), b/c we just

computed it!

Suffix array: querying

Three cases:

P SA[c]

SA[l]

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

*

Suffix array: querying

Case 2:

xx

Look here next

P
SA[c]

SA[l]

SA[r]

Next char of SA[c] after LCP(SA[c], SA[l])
must be greater than corresponding char of P

P < SA[c]

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

In this case, we compute
LCP(P[u:], SA[c][u:]).
c becomes our new r,

and now we know the new
LCP(P, SA[r]), b/c we just

computed it!

Suffix array: querying

Three cases:

P SA[c]

SA[l]

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

*

Suffix array: querying

Case 3:

Must do further character comparisons
between P and SA[c]

Each such comparison either:

(a) mismatches, leading to a bisection

(b) matches, in which case LCP(P, SA[c]) grows
?

P
SA[c]

SA[l]

SA[r]

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

Suffix array: querying

Three cases:

P SA[c]

SA[l]

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

*

Suffix array: querying
We improved binary search on suffix array from O(n log m) to O(n + log m)
using information about Longest Common Prefixes (LCPs).

LCP(SA[c], SA[l]) >
LCP(P, SA[l])

LCP(SA[c], SA[l]) <
LCP(P, SA[l])

LCP(SA[c], SA[l]) =
LCP(P, SA[l])

LCPs between P and suffixes of T computed during search, LCPs among
suffixes of T computed offline

Bisect right! Bisect left! Compare some
characters, then bisect!

*

Sketch of Running Time

In case 1 & 2, we make O(1) comparisons and bisect left or right — there
are at most O(log m) bisections.

In case 3 we try to match characters starting at some offset between SA[c]
and P. If they match, those characters will never be compared again, so
there are at most O(|P|) such comparisons.

Mismatching characters may be compared more than once.

But there can be only 1 mismatch / bisection. There are O(log m)
bisections, so there are at most O(log m) mismatches.

∴Total # of comparisons = O(|P| + log m).

Thm. Given the LCP(X,Y) values, searching for a string P in a suffix
array of length m now takes O(|P| + log m) time.

+

How to pre-compute LCP

• To perform this “efficient” search, we must be able to
look up LCP(SA[c], SA[l]) and LCP(SA[c], SA[r]).

• How can we pre-compute this information efficiently?

• Which LCP values do we need (hint: not all of them)?

• Given LCP for left and right sub-interval of a search,
how can we compute LCP for the containing interval?

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):
0 155 10

Example where m = 16 (incl. $) # search tree nodes = m -1

How to pre-calculate LCPs for every (l, c) and (c, r) pair in the search tree?

Triples are (l, c, r) triples

*

Suffix array: LCPs

Suffix Array (SA) has m elements

Define LCP1 array with m - 1 elements such that LCP[i] = LCP(SA[i], SA[i+1])

6
5
2
3
0
4
1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

SA(T): LCP1(T):

0
1
1
3
0
2

LCP(SA[0], SA[1])

*

Suffix array: LCPs

LCP2[i] = LCP(SA[i], SA[i+1], SA[i+2])

6
5
2
3
0
4
1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

0
1
1
3
0
2

SA(T): LCP1(T): LCP2(T):

In fact, LCP of a range of consecutive suffixes in SA equals the
minimum LCP1 among adjacent pairs in the range

min(LCP1[i], LCP1[i+1])

LCP1 is a building block for other useful LCPs

0

1
1
0
0

*

Suffix array: LCPs

Good time to calculate LCP1 it is at the same time as we build the
suffix array, since putting the suffixes in order involves breaking
ties after common prefixes

6
5
2
3
0
4
1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

SA(T): LCP1(T):

0
1
1
3
0
2

*

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

*

len

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

0

$

*

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

0 1

$

*

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

0 1 8 1

$

*

(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4)

(2, 3, 4)

(12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

0 1 8 1

0min(0, 1) =

$

*

t

• suf

(2, 3, 4)(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6
0 0 8
1 1 1

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4) (12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

0 1 8 1

0

min(8, 1) =

1

LCP_LC(T):
LCP_CR(T):

$

*

:w

(2, 3, 4)(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6
0 0 8 0 5 1 3 0 7 0 4 0 2 0 6
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4) (12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

LCP_LC(T):
LCP_CR(T):

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0, 1, 2) is at
LCP_LC[0], not LCP_LC[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LC[c-1]

$

*

:w

(2, 3, 4)(0, 1, 2) (12, 13, 14)

Suffix array: LCPs

15 14 7 0 10 3 12 5 8 1 11 4 13 6 9 2
0 1 8 1 5 1 3 0 7 0 4 0 2 0 6
0 0 8 0 5 1 3 0 7 0 4 0 2 0 6
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

(0, 8, 16)

(0, 4, 8) (8, 12, 16)

(4, 6, 8)

(4, 5, 6) (6, 7, 8)

(8, 10, 12)

(8, 9, 10) (10, 11, 12)

(0, 2, 4) (12, 14, 16)

(14, 15, 16)

SA(T):

0 155 10

LCP1(T):

T = abracadabracada

LCP_LC(T):
LCP_CR(T):

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0, 1, 2) is at
LCP_LC[0], not LCP_LC[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LC[c-1]

$

Suffix array: LCPs

Python example: http://nbviewer.ipython.org/6783863

#.Calculates.(l,.c).LCPs.and.(c,.r).LCPs.from.LCP1.array...Returns
#.pair.where.first.element.is.list.of.LCPs.for.(l,.c).combos.and
#.second.is.LCPs.for.(c,.r).combos.
def.precomputeLcps(lcp1):
....llcp,.rlcp.=.[None].*.len(lcp1),.[None].*.len(lcp1)
....lcp1.+=.[0]
....def.precomputeLcpsHelper(l,.r):
........if.l.==.rR1:.return.lcp1[l]
........c.=.(l.+.r).//.2
........llcp[cR1].=.precomputeLcpsHelper(l,.c)
........rlcp[cR1].=.precomputeLcpsHelper(c,.r)
........return.min(llcp[cR1],.rlcp[cR1])
....precomputeLcpsHelper(0,.len(lcp1))
....return.llcp,.rlcp

O(m) time and space
Can be done in:

*

Suffix array: querying review

We saw 3 ways to query (binary search) the suffix array:

1. Typical binary search. Ignores LCPs. O(n log m).

2. Binary search with some skipping using LCPs
between P and T’s suffixes. Still O(n log m), but it
can be argued it’s near O(n + log m) in practice.

3. Binary search with skipping using all LCPs,
including LCPs among T’s suffixes. O(n + log m).

Gusfield:
“Simple Accelerant”

Gusfield:
“Super Accelerant”

How much space do they require?

1. ~m integers (SA)

2. ~m integers (SA)

3. ~3m integers (SA, LCP_LC, LCP_CR)

*

Suffix array: performance comparison

Super
accelerant

Simple
accelerant No accelerant

python -O 68.78 s 69.80 s 102.71 s

pypy -O 5.37 s 5.21 s 8.74 s

character
comparisons 99.5 M 117 M 235 M

Matching 500K 100-nt substrings to the ~ 5 million nt-long E. coli
genome. Substrings drawn randomly from the genome.

Index building time not included

*

Another “practical” speedup
•Imagine you will never search for patterns of length
< k (e.g. 4-mers are non-informative in any
moderately-sized genome)

•Consider the following “enhanced” suffix array:
• Build a hash-table from k-mers to suffix array intervals. Now, any pattern of

length k’ > k must start with some hashed prefix of length k. Generally, the
interval that needs to be searched is much smaller

Suffix array: building SA

Idea: Build suffix tree, do a
lexicographic depth-first traversal
reporting leaf offsets as we go

ba

aba$
$

$a

$

aba$

ba

$

aba$

0

3

2

5
4

1

6
a

ba

0

3

6
5
2
3

(etc)Traverse O(m) nodes and emit m
integers, so O(m) time assuming
edges are already ordered

…
…

AAC

AAG

AAT

AAGCCATG
[i,j)

[i’,j’)

[i’’,j’’)

i

j

Now, you only need to search the interval [i,j) — O(n * log(j-i)) time

Can provide considerable speedup

“Two Simple Full-Text Indexes Based on the Suffix Array”, Szymon Grabowski and Marcin Raniszewski

k=12

Linear

probing

Hash at

𝝰=0.5

Kowalski, Tomasz, et al. "Suffix arrays with a twist." arXiv preprint arXiv:1607.08176 (2016).

Some other clever ideas#:

• Use a k-ary (B-tree) layout
• Use a lookup table where keys are concatenated Huffman codes of fixed

bit length
• Use alternative strategy (doubling/galloping) to find the right SA boundary

Suffix array: sorting suffixes

Expected time: O(???)

def!quicksort(q):
!!!!lt,!gt!=![],![]
!!!!if!len(q)!<=!1:
!!!!!!!!return!q
!!!!for!x!in!q[1:]:
!!!!!!!!if!x!<!q[0]:
!!!!!!!!!!!!lt.append(x)
!!!!!!!!else:
!!!!!!!!!!!!gt.append(x)
!!!!return!quicksort(lt)!+!q[0:1]!+!quicksort(gt)

0
1
2
3
4
5
6

a b a a b a $

b a a b a $

a a b a $

a b a $

a $

$

b a $

One idea: Use your favorite sort, e.g., quicksort

m2 log m

Not O(m log m) because a suffix comparison is O(m) time

*

Suffix array: sorting suffixes

One idea: Use a sort algorithm that’s aware that the items
being sorted are strings, e.g. “multikey quicksort”

Bentley, Jon L., and Robert Sedgewick. "Fast algorithms for sorting and searching strings."
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 1997

Essentially O(m2) time

0
1
2
3
4
5
6

a b a a b a $

b a a b a $

a a b a $

a b a $

a $

$

b a $

*

Suffix array: sorting suffixes
Another idea: Use a sort algorithm that’s aware that the
items being sorted are all suffixes of the same string

Original suffix array paper suggested an O(m log m)
algorithm

Manber U, Myers G. "Suffix arrays: a new method for on-line string
searches." SIAM Journal on Computing 22.5 (1993): 935-948.

Other popular O(m log m) algorithms have been suggested
Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-
CS-TR:99-214, LUNDFD6/(NFCS-3140)/1-43/(1999), Department of
Computer Science, Lund University, Sweden, 1999.

More recently O(m) algorithms have been demonstrated!
Kärkkäinen J, Sanders P. "Simple linear work suffix array construction."
Automata, Languages and Programming (2003): 187-187.
Ko P, Aluru S. "Space efficient linear time construction of suffix arrays."
Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2003.

The Skew Algorithm (aka DC3)
Kärkkäinen & Sanders, 2003

• Main idea: Divide suffixes into 3 groups:
• Those starting at positions i=0,3,6,9,.... (i mod 3 = 0)
• Those starting at positions 1,4,7,10,... (i mod 3 = 1)
• Those starting at positions 2,5,8,11,... (i mod 3 = 2)

• For simplicity, assume text length is a multiple of 3 after padding
with a special character.

mississippi$$

. . .
Basic Outline:

• Recursively handle suffixes from the i mod 3 = 1 and i mod 3 = 2
groups.

• Merge the i mod 3 = 0 group at the end.
+

0

12

Step 0 — Constructing a sample
These are called the “sample suffixes”

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 1 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 1 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 1.5 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 1.5 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 1.5 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Note: After only 1 level of recursion, these suffixes would be
“tied”

The resolved ranks here represent what we’d get after
a second level of recursion.

Step 1.5 — Sorting the sample

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

1 42 64 37 8

R2 = [247][463][474][638]

These suffixes were tied at the previous level, but here, we
can resolve them. The lexical renaming allows us to
compare longer and longer suffixes of the text.

Step 2 — Sorting the non-sample suffixes

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 2 — Sorting the non-sample suffixes

Taken from: Kärkkäinen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

SB2 SB0 SB1 SB0 SB1 SB2

SB1 SB0 SB1SB2

Running Time

Solves to T(n) = O(n):

• Expand big-O notation: T(n) ≤ cn + T(2n/3) for some c.

• Guess: T(n) ≤ 3cn

• Induction step: assume that is true for all i < n.

• T(n) ≤ cn + 3c(2n/3) = cn + 2cn = 3cn ☐

T(n) = O(n) + T(2n/3)

time to sort and
merge

array in recursive calls
is 2/3rds the size of
starting array

+

Using the suffix array for read
alignment: STAR

Seeding through SA search for MMPs

With read sequence R, read location i, and reference sequence G, the
MMP(R,i,G) is defined as the longest substring (Ri, Ri+1, …, Ri+MML-1)
where MML is the maximum mappable length.

MMPs are computed starting at 5’ end, but also at regular intervals in the
read. The read is also searched in the 3’->5’ direction.

Question: How do you search for an MMP in the suffix array?

Seeding through SA search for MMPs
To speed up suffix array search even further, STAR takes
advantage of the heuristic we discussed above:

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Seeds are clustered into windows and “stitched”

Seeds are filtered by frequency of occurrence to select
“anchors” (essentially, infrequently occurring seeds)

Alignment windows (genomic regions) are selected around
anchors

All co-linear matches within an alignment window (anchor
and non-anchor) are stitched together to form a linear
alignment for the whole fragment (ends of a paired-end
read are treated as a single fragment)

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Stitching and Extension

Note: this is a modified recurrence that allows only 1 gap
between the two “pieces” being stitched together. This
leads to a runtime that is proportional to r2 - r1, but this
places structural constraints on the types of alignments that
can be found.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Scoring alignments

The alignment is scored in a straightforward way. Here, ins /
del are indels in the stitching, while “gap” is taken to be an
intronic gap between parts of a read or read ends. Gaps are
scored differently, with a logarithmic penalty in their length.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

Collecting Alignment Results

Finally, alignments from all alignment windows are collected
and sorted by score and alignments within a user-specified
distance from the best-scoring alignment are reported.

STAR has other abilities we won’t discuss in detail (e.g. finding
chimeric alignments by letting reads span multiple alignment
windows), and has been heavily updated since publication (still
in active development). It’s now also commonly used for e.g.
fusion detection and can even align circular transcripts or
allow back-splicing in alignments.

We will explore the results from the STAR paper in a later
lecture along with results from other “full text” aligners.

Dobin, Alexander, et al. "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29.1 (2013): 15-21.

